LAZZEN

良信

Shanghai Liangxin Electrical Co., Ltd.

NDM5E-160 Plastic Case Circuit Breaker

Product Specification

(IPD-ENG-DEV-T22 A1 2016-09-23)

Prepared	杨荣荣	Date	2022-12-07
Reviewed	徐君成	Date	2022-12-09
Countersign	黄金华	Date	2022-12-12
		-	
		-	
		-	
		-	
Approved	工化	Date	2022-12-13

	Revision information							
Version	Revised contents and reasons	Date	Prepared	Reviewed	Approved			
3	Rewrite for new template	2020/04/07	Wu Yali	Feng Daijun	Wu Chunyan			
4	Updata table 7 altitude derating correction coefficient table	2020/04/20	Wu Yali	Feng Daijun	Wu Chunyan			
5	Increase maintainable life	2022/12/05	Yang rongrong	Xu Jun cheng	Ding Fei			

1、 Application

NDM5E-160 Series Moulded Case circuit breaker, with rated in sulation voltage of 800V, is applied to a circuit with alternate current of 50Hz or 60Hz. In the circuit with rated working voltage to AC380V/AC400V/AC415V, and rated working current of 160A. It is used to distribute electric energy, in addition to the functions of long-time delay inverse time limit of overload, short-circuit short-time delay definite time limit, short-circuit short-time delay inverse time limit, short-circuit instantaneous, overload and alarm, alarm non tripping, which can protect lines and power equipment from damage. It also has the current, voltage, power, electric energy, frequency, service life, opening and closing status, operation times and other information fed back to the upper computer or other energy efficiency management system, which is used to detect and monitor the circuit breaker, reduce the operation and maintenance cost of the power grid, and provide necessary data for the future energy efficiency system.

Separation function with related mark:

Meet the criterion: IEC60947-2、GB/T 14048.2

Each voltage level and short-circuit section capacity of the circuit breaker can be connected with the lower incoming line.

2. Product Pictures

Fig. 1 Picture of Product

3. Model and Implication

ND	<u>M 5 E-160 </u>								
1	2 3 4 5 6	7 8 9 10 11 12 13							
S.N.	Name of S.N.	Interpretation							
1	Enterprise characteristic code	ND: Nader low-voltage apparatus							
2	Product type code	M: Molded case circuit breaker (MCCB)							
3	Design S.N.	5							
4	Derived code	E: Electronic							
5	Current of the frame size(A)	160							
6	Interrupting level code	L:standard M:medium-high H:high							
7	Rated current(A)	160							
8	Pole	 3:3 poles 4A: N-pole is without the over-current protection and always connect 4B: N-pole is without the over-current protection and acts together with other three poles(N-pole close first and open last) 4C: N-pole is with the over-current protection and acts together with other three poles(N-pole close first and open last) 4D: N pole is without the over current protection and always connect 							
9	Trip release code	ETB: electronic release ETB-T: communication electronic release ETB-PT: communication energy efficiency electronic release							
10	Installation code + Wiring method	Null: Stationary connector + front panel wiringES: Stationary connector + front extension wiring boardR0: Stationary connector + screw connector + on after terminalFcu: Stationary connector + front bare copper cable wiringG: Guide rail type+ front panel wiringGES: Guide rail type+ front extension wiring boardGFcu: Guide rail type+ front bare copper cable wiringP0FH: plug-in without secondary connector + horizontal wiring in front of							

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 4 of 34

		board
		P0RH: plug-in without secondary connector + horizontal wiring behind the board
		P0RV: plug-in without secondary connector +rear vertical wiring
		P1FH: plug-in with secondary connector + horizontal wiring in front of board
		P1RH: plug-in with secondary connector + horizontal wiring behind the board
		P1RV: plug-in with secondary connector + rear vertical wiring
		Null: directly handle operation
		Z1A150:rotary handle with round center hole and square axis length 150
		Z1A200: rotary handle with round center hole and square axis length 200
		Z1A300:rotary handle with round center hole and square axis length 300
	Operation method	Z1A350:rotary handle with round center hole and square axis length 350
		Z1A650:rotary handle with round center hole and square axis length 650
		Z1F150:rotary handle with round square hole and square axis length 150
11		Z1F200:rotary handle with round square hole and square axis length 200
		Z1F300:rotary handle with round square hole and square axis length 300
		Z1F350:rotary handle with round square hole and square axis length 350
		Z1F650:rotary handle with round square hole and square axis length 650
		M02:motor operation DC24V
		M11:motor operation AC110V/DC110V
		M22:motor operation AC230V/DC220V
		M40:motor operation AC400V
12	Accessory code	See table 2
40	Othersed	J:Mechanical interlocking
13	Other codes	MS2: MS2 lock

Table 1 Accessory Code

Accessory	Accessory name	Installation position
code		3P、4P
-	None	_
08	Alarm contact	
10	Shunt release	
30	Under-voltage release	0
21	Single auxiliary contact	

61	Two sets of single auxiliary contacts	
23	Three sets of single auxiliary contacts	
18	Shunt release, alarm contact	
38	Under-voltage release, alarm contact	
22	Single auxiliary contact, alarm contact	
88	Two sets of single auxiliary contacts, alarm contact	
26	Three sets of single auxiliary contacts, alarm contact	
42	Shunt release, single auxiliary contact, alarm contact	
44	Shunt release, two sets of single auxiliary contacts, alarm contact	
46	Shunt release, three sets of single auxiliary contacts, alarm contact	
75	Under-voltage Release, single auxiliary contact, alarm contact	
77	Under-voltage release, two sets of single auxiliary contacts, alarm	
81	Under-voltage release, three sets of single auxiliary contacts, alarm	
41	Shunt release, single auxiliary contact	
11	Shunt release, two sets of single auxiliary contacts	
12	Shunt release, three sets of single auxiliary contacts	
71	Under-voltage release, single auxiliary contact	0
72	Under-voltage release, two sets of single auxiliary contacts	
73	Under-voltage release, three sets of single auxiliary contacts	

Note: Single auxiliary contact; Alarm contact; Shunt release; Under-voltage release

The ETB-T /ETB-PT in NDM5E-160 has no three auxiliary codes.

Fig2. Diagram for Accessory Installation

4. Main Technical Parameters

Table 2 Main Technical Parameters

Frame current Inm	160
Rated current In (A)	160
Rated voltage Ue (V)	AC380/400/415

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 6 of 34

Rated impulse withstand voltage Uimp(kV)			8								
Rated insulation voltage Ui(V)			800								
Power frequency withstand voltage (1min)(V)					30	00					
Pole				3			4				
Rate sh	ed Ultin ort-ciro	nate cuit	Mode	el	Code	L	М	Н	L	М	Н
break	breaking capacity Icu (kA)		160	AC380/400/415V	70	100	150	70	100	150	
Rated Service short-circuit breaking Capacity Ics (kA)		Capacity Ics (kA)	lcs=100%lcu								
	Mechanical Mair		aintai	ntainable free life		20000					
Life	Life			Maintainable life		40000					
		Electr	ical life(A0	2380/4	400/415V)	10000					
		<u>+ +</u>			L (mm)		135				
Exter	rnal				M (mm)	90 120			120		
	131011				H (mm)		8	80			
		Flasho	over distan	ce (r	nm)			\leq	50		

Note: The overall dimension does not include the dimension of terminal cover.

4.1 Sectional area and applicable rated current adopted in wiring

Table 3 Wiring Wire Parameters

Rated current(A)	160
Sectional area of conductor(mm ²)	70

Note: If the product is connected with 70mm² copper nose wires, it needs to be connected with an extended row. The customer can solve the problem by himself or buy an extended row from our company.

4.2 Tightening Torque of the Circuit Breaker Terminal and Mounting Screw

Table 4 Tightening Torque of the Circuit Breaker Terminal and Mounting Screw

Model	Screw application	Thread specification	Torque value(N.m)
160	Wiring screw	M6	12
100	Set screw	M4	1.2

4.3 Temperature variation deration coefficient of circuit breaker

Table 5 Temperature variation deration coefficient of circuit breaker

Model	Deration factor of product temperature change								
NDM5E-250	Temperature (℃)	40	45	50	55	60	65	70	
	Deration factor	1.0	1.0	1.0	0.98	0.94	0.92	0.90	

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 7 of 34 Note: 1)When the operating ambient temperature is below + 50°C, and do not need to reduce capacity.

2)The above deration factors are measured under the rated current of the shell frame $_{\circ}$

Table 6 Altitude drop correction factor										
Altitude (m)	2000	2500	3000	3500	4000	4500	5000			
Working current correction coefficient	1	1	0.98	0.97	0.95	0.94	0.93			
Power frequency withstand voltage (V)	3000	3000	2700	2550	2400	2300	2200			
Average insulation class (V)	800	800	720	670	630	600	560			

4.4 High altitude deration factor of circuit breaker

4.5 Power consumption of circuit breaker Table 7 NDM5E-160 Product current specification single phase power consumption able

	Current	Sinę	gle phase power consumpti	on (W)				
Model	specification	Front and rear Plug in front of plate wiring rear board wiring						
NDM5E-160	160A	9	11	10				
Note: The above data are the single-phase loss measured under the rated current of the circuit breaker when the ring temperature is 40° C.								

5 Normal Working Environment of Circuit Breaker

1) The altitude of the installation site doesn't exceed 2,500m. See the "High-altitude

Derating Factor Table of Circuit Breaker" for the derating factor at the altitude;

2) The ambient temperature is -35° C~ + 70°C; the average within 24 h shall not be more than +35°C. If the ambient temperature is higher than +40°C, the user needs to reduce the capacity. See the "Derating Factor Table of Temperature Change for the Circuit Breaker" for the derating factor;

3) Its relative humidity at an ambient temperature of $+40^{\circ}$ C should not exceed 50%. A higher relative humidity is allowed at a lower temperature. For example, the relative humidity at 20°C can reach 90%; for frost due to temperature change, the corresponding measures should be taken;

4) The product can withstand the effects of wet air, salt mist, oil mist and mould;

5) The installation category of the circuit breaker connected to the main loop is: Category

III (power distribution and control level), The installation category of the circuit breaker not

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 8 of 34 connected to the main loop is: Category II (load level);

6) The pollution level is Level 3;

7) Degree of protection : IP 20;

8) The product should be installed in places that are free from explosive media, media corrosive to metal, insulation damaging gas, and conductive dust, which should be also avoided from snow and rain;

9) In case of stricter user conditions than the above description, negotiate with the manufacturer.

6. Time-Current Curves

Tripping characteristics curve under normal environment (ambient air temperature: +40°C)

Note: When the current is (1-1.5) Is, the short time-delay tripping time Ts is inverse time limit, and the accuracy is $\pm 10\%$. And there is 20ms fixed error.

When the current >1.5Is, the short time-delay tripping time Ts is fixed time limit, and the accuracy is $\pm 10\%$. And there is 20ms fixed error as well.

6.2 Current limiting and permissive characteristic curve

Fig.4 Current limiting characteristic curve chart

Fig.5 Permissive characteristic curve chart

7. Controller operation description and function introduction

7.1 Controller operation and use

7.1.1 controller control panel

Communication Electronic Release

Communication Energy Efficiency Electronic Release

Fig. 6 Gear for Electronic Release

3P

4P

- 7.1.2 Controller panel component of circuit breaker
- 1) Ir Overload long delay current setting
- 2) Tr Overload long delay time setting
- 3) Is Short circuit short delay current setting

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 10 of 34

- 4) Ts Short circuit short delay time setting
- 5) li Short circuit instantaneous current setting
- 6) Ip Pre-alarm current setting
- 7) Irn N phase protection current setting
- 8) In rated current

LAZZEN

- 9) TEST test port
- 10) Power power indicator
- 11) Alarm Pre-alarm indicator
- 12) Over Overload indicator
- 7.1.3 Functions of each part of controller control panel
- 1) Test port

Special test equipment can be connected to via this port to test and adjust.

Meanwhile the port is also used to communication connection.

2) Current and time knob

Rotating to set up the current and time. Good combination of these parameters can give protection to cable and device. This must be operated by professionals.

Note: When Ir is set to 1.0, Tr@2Ir to 10s and the main loop is powered on at the current of $I=2\times160A$, the circuit breaker will break the main loop after lasting 10s with an accuracy of the action time $\pm10\%$.

At the overload current, the breaking time of the main loop performed by the circuit breaker depends on the formula below: $t=(2\times Ir/I)2\times Tr@2Ir$.

I: Indicates the actual current value in main circuit when overload.

- 7.1.4 Indicators
- 1) Power indicates Power

Indicator is on when working

2) Pre-alarm indicates Alarm

Indicator flashes when actual working current is over the set Ip and turns constant on after certain time.

3) Overload indicates over

Indicator is on when actual working current is over 1.15 times of the set Ir. The breaker

trips after certain time.

7.2 Setting of Controller Parameters

Table 8 Parameter Setting Gear Table of the 3P Electronic Controller

Rated	Current and time parameters							
current In(A)	lr(×ln)	Tr(s)	ls(×lr)	Ts(s)	li(×ln)	lp(×lr)		
160	0.4,0.5, 0.6,0.7, 0.8,0.9, 1.0,OFF	10,15,30, 45,60,80, 100, 120, OFF	2,3,4,5,6,7, 8,9,10,OFF	0.1, 0.2, 0.3, 0.4	3,4,5, 6,7,8, 9,10, 12,14, OFF	0.9,1.0, OFF		

Table 9 Parameter Setting Gear Table of the 4P Electronic Controller

Rated	Current and time parameters					
current In(A)	lr(×ln)	Tr(s)	ls(×lr)	Ts(s)	li(×ln)	lp(×lr)
160	0.4,0.5, 0.6,0.7, 0.8,0.9, 1.0,OFF	10,15,30, 45,60,80, 100, 120, OFF	2,3,4,5,6, 7,8,9,10, OFF	0.1, 0.2, 0.3, 0.4	3,4,5, 6,7,8, 9,10, 12,14, OFF	0.5,1.0, OFF

Note: For 4P products, Ip=0.9Ir

For ETB-T/ETB-PT products, the P and T in release derived code are displayed in side label of the products.

producis.

7.3 Detail Demonstration of Controller Function

7.3.1 Basic function table

Table 10 Comparison Table for Basic Function

	Rele	ase code	ETB	ETB-T	ETB-PT
		Long-delay protection	\checkmark	\checkmark	\checkmark
		Short-delay protection	\checkmark	\checkmark	\checkmark
	Inst	ant protection for short circuit	\checkmark	\checkmark	\checkmark
Ductostinus doma	Ne	utral pole protection(4C/4D)	\checkmark	\checkmark	\checkmark
Protection alarm	Ground protection			\checkmark	\checkmark
	Over/under voltage protection				\checkmark
	Pre-alarm for overload			\checkmark	\checkmark
	Heat simulation(heat memory)			\checkmark	\checkmark
		Current measurement	_	\checkmark	\checkmark
	Voltage	Line/phase voltage	_		\checkmark
ivieasurement	Power	Active Reactive Apparent PF			
	Energy	Active Reactive Apparent	_		

					,
	Frequency				
	Catting	Knob		\checkmark	\checkmark
	Setting	Menu			_
	Storage for Fault	StorageOverload, short-delay for short circuit, instant for short circuit, action time, fault phase		20	20
Maintenance	memory	Over/under voltage, action time, fault phase	_		
	Operation time with electricity			\checkmark	\checkmark
	Contact wearing		_	\checkmark	\checkmark
	Storage for log			20	20
		Real-time current	_	\checkmark	\checkmark
	Real-time voltage				\checkmark
Diaplay	Power, energy, frequency				\checkmark
Display		Setting value	_		\checkmark
	Last fault ty	pe, fault current and voltage, action			
	tir	ne length, occurrence time		Vnote2	Vnote2
Extended	Diplay module note3		0	0	0
module	Tem	perature testing module note3	0	0	0

Note1: communication adaptor DF-MB/C3 or display module DF-XS1 need to be deployed;

Note 2: displayed by the upper system;

Note 3: o means optional function.

All protections must meet the power supply requirements of the circuit breaker, with three-phase energization of 0.2in and single-phase energization of 0.4in.

7.3.2 Setting value for controller

1) Setting value of the overload long time-delay protection

The overload long time-delay protection is based on the true RMS value for protecting the load.

Setting gear of the current Ir		(0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,OFF) ×In tolerence±3%							
	Tr@2Ir setting		Inm=160A						
	gear (s)	10	15	30	45	60	80	100	120
	≤1.05Ir				>2h	(no actior	ı)		
Action	>1.30Ir				<1	h (action)			
characteristics	At 1.5Ir, tr (s)	17.78	26.67	53.33	80.00	106.67	142.22	177.78	213.33
	At 2.0Ir, tr (s)	10	15	30	45	60	80	100	120
	At 7.2Ir, tr (s)	0.77	1.16	2.31	3.47	4.63	6.17	7.72	9.26
	Accuracy (%)					±10			

Table 11 Overload Long-Delay Protection Parameter Setting

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 13 of 34 Note: The action curve complies with tr=(2Ir)2×Tr@2Ir /I2

Tr: overload long time-delay action time

Tr@2Ir: setting value of the overload long time-delay action time

I: Actual running current

LAZZEN

Ir: setting value of the overload long time-delay action current

When Tr is off, MCCB will not trip if overloaded.

2) Setting value of the short-circuit short time-delay protection

The short time-delay protection prevents the impedance short-circuit of the distribution system.

Divided into two segments: reverse time limit and fixed time limit.

Setting gear of the current Is		(2, 3, 4, 5, 6, 7, 8, 9, 10,OFF)×Ir tolerence±3%					
Action characteristics	Reverse time limit	Ts setting gear (s)	0.1 0.2 0.3			0.4	
	ls≤l<1.5ls	ts action time (s)	t _s =(1.5ls) ² ×Ts/l ²				
	Fixed time limit	ts action time (s)	0.1	0.1 0.2 0.3 0.4			
	1.5ls≤l <li< td=""><td>Accuracy (%)</td><td>±20</td><td colspan="3">±10</td></li<>	Accuracy (%)	±20	±10			
	I<0.9 Is	no action					

Table 12 Short Circuit Short Delay Protection Parameter Setting

Note: The action curve of the reverse time limit complies with ts=(1.5ls)2×Ts/I2, while the action

time of the fixed time limit tracks the Ts setting value.

ts: short-circuit short time-delay action time

Ts: setting value of the short-circuit short time-delay action time

I: Actual running current

Is: setting value of the short-circuit short time-delay action current

There is an additional fixed error 20ms except from the time accuracy in table above.

When Ir is ture off Is will turn off synchronously.

3) Setting Value of the Short-Circuit Instant Protection:

The instantaneous protection function can prevent short circuit of metal solids of the distribution system. Due to larger short-circuit current of the fault, the system requires being disconnected rapidly.

	setting current gear li(×In)		4	5	6	7	8	10	12	14
Action	Current accuracy (%)					±15				
characteristic	l≥1.15li action time	<50ms								
	l≤0.85li				no	o actio	on			

Table 13 Short-Circuit Instant Protection Parameter Setting

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 14 of 34

4) Setting Value of The N-Phase Protection:

The 4-pole controller features the N-phase overload long time-delay protection.

Table14 N-Phase	Protection	Setting	Value
-----------------	------------	---------	-------

N-phase protection type	Description		
0.5kr	The protective action point is half of the setting value in case		
0.511	of a N-phase overload fault		
1.015	The protective action point equals to the setting value in		
1.01	case of a N-phase overload fault		
OFF	N-phase protection turned off		

Note: The N-phase overload long time-delay protection time tracks the Tr setting value.

5) Setting value of the overload pre-alarm:

Setting current Ip		(0.9,1.0,OFF)×Ir tolerence±3% Tolerence		Note	
	< 0.9 IP	Change from flashing to keeping on	+ 2	The overload alarm of the	
Action characteristic	>1.1 IP	Change from flashing to keeping on	<u> </u>	4P controller is fixed in	
	Off	Off Off		the controller Ip=0.9Ir.	
Function Description		when I \geq IP, the warning indicator (yellow light) flashes. After t = t / 2, the			
		indicator turns to be on continuously			

Table 15 Controller with Pre-Alarm Function

6) Measurement accuracy

Table 16 Measurement Accuracy Parameter

		Measurement range	Accuracy
Current	Ia, Ib, Ic, In	(0.2~2) In	$\pm 1\%;$
Valtaga	Line voltage	(0.5~1.5) Ue	$\pm 0.5\%$
voltage	Phase volatge	(0.5~1.5) Ue/1.732	$\pm 0.5\%$
	Active power		
D	Reactive power	$(0.2\sim2)$ In, $(0.5\sim1.5)$ Ue	$\pm 1\%$
Power	Apparent power		
	Power function	-0.5~-1, 0.5~1;	±1 %
	Active energy		
Energy	Reactive energy	$(0.2\sim2)$ In, $(0.5\sim1.5)$ Ue	$\pm 1\%$
	Apparent energy		
	Frequency	/	±0.1Hz

7.3.3 Health management

良信

The indication of circuit breaker health is expressed by 0 to 100%, and the superposition management id carried out form the three dimensions of production date, operation tmes and contact wear.

Note: It can only be read through communication .

Product outline and installation dimensions 8、

8.1 Overall dimension and installation dimension of front board wiring products

Fig.7 External Dimensions Of Front-Panel Connection Products

Fig.8 Mounting Holes Installed on the Base Plate

Note: Dimensions of copper bar front-Panel connection products: A=67.5, A1=135;

Dimensions of cable front-Panel connection products (FCu): A=77.5, A1=155; Unmarked tolerance level should follow GB/T 1804-c.

8.2 outline and installation dimension of terminal cover

Note: Unmarked tolerance level should follow GB/T 1804-c.

8.3 External Dimensions of Extended Front-Panel Connection Products

Fig.9 2P、3P、4P Outline and installation dimensions of expansion wiring in front of the board Table 17 The overall dimensions of the front wiring expansion bar and the circuit breaker after combined installation are shown in the figure below (unit: mm):

Extended bus	L	L1	L2	L3	W	₩2	W3	W4	₩5	H	H1	Wiring screw
KM1/M5-160	244.5	214.5	135	119	30	45	130	52.5	160	25	5	M10 imes 40

Note 1: 2p Extended bus combination mode: small expansion bus (2 pieces on the left, right);

2: 3p Extended bus combination mode: large expansion bus (2 pieces on the left, right) +2 – piece direct expansion busbar;

3: 4p Extended bus combination mode: small expansion bus (2 pieces on the left, right) large expansion bus (2 pieces on the left, right);

4: Unmarked tolerance level should follow GB/T 1804-c.

8.4 3P、4P、 Outline and installation dimension of rear wiring board

Fig.10 3P, 4P outline dimension drawing of rear wiring board

Table 183P、 4P the installation dimensions of wiring products behind the board are shown in the
table below (unit: mm)

Pear panel wiring	L	L1	L2	L3	L4	L5	Н	H1	H2	W	W1	W2	Wiring screw
BH1/M5-160	119	10	13.5	107	5	15	33.5	10	25	30	120	90	M6 imes 16

Note: Unmarked tolerance level should follow GB/T 1804-c.

8.5 External Dimensions of Plug-In Front-Panel Connection

Fig.11 3P, 4P Outline and installation dimensions of plug-in board front wiring

有电有艮信

lectricity For Life

	8 ()									
Plug in specification	W	W1	W2	W3	W4	₩5	L	L1	L2	Wiring screw
CR1-Q/M5-160	121	90	120	151	15	30	253	233	216	M8 imes 25
Plug in specification	L3	L4	L5	Н	H1	H2	H3	H4	H5	Install the screws
CR1-Q/M5-160	180	197	131	175	71	79	3	49	40	M4 imes 75

Note: Unmarked tolerance level should follow GB/T 1804-c.

Fig.12 Mounting hole dimensions of plug-in connections

Table 20 The overall dimensions of plug-in device (horizontal wiring behind the board) and circuit

		1	1	1			1		<u> </u>	· · ·		
Plug in board rear wiring	W	W1	W2	W3	W4	₩5	W6	W7	L	L1	L2	Wiring screw
CR1- H/M5-160	121	90	120	151	15	30	60	90	178	97	3	$\mathrm{M8}\!\times\!25$
Plug in board rear wiring	L3	L4	L5	Н	H1	H2	H3	H4	H5	H6	H7	Install the screws
CR1- H/M5-160	91	22	55	225	120	79	29	41	70	38	18	M5 imes 35

breaker after installation are shown in the table below (unit: mm)

Note: Unmarked tolerance level should follow GB/T 1804-c.

8.7 DIN-Rail mounting

Fig. 13 Installation Dimensions of Guide Rails Table 21 Overall dimension of guide rail installation table (unit: mm)

Mode1	W	W1	L	L1	L2	Н	H1	Series
NDM5E-160	120	90	135	50	5.3	106	80	3P/4P

Note: Unmarked tolerance level should follow GB/T 1804-c.

8.8 Rotary handle operating mechanism

Manual operation-the schematic diagram of handle installation and opening and the outline dimension diagram of manual operation are shown below respectively:

Fig.14 External Dimension Diagram of Manual Operation

Fig.15 Handle Mounting Hole Diagram

Note:1)During manual operation, it shall rotate 180° clockwise, and counterclockwise operation is prohibited.

2) Unmarked tolerance level should follow GB/T 1804-c.

8.9 Electric operation

LAZZEN

良信

Electric operation-overall dimension of circuit breaker and its electric operating mechanism after installation:

Fig.16 External Dimension Diagram of Electric Operation

Fig.17 Electric operation wiring diagram

Note: 1) During manual operation,180° shall be operated clockwise ,and counterclockwise operation is prohibited

- 2) P1 and P2 shall not be connected with S1 and S2 and S4 during electric operation wiring
- 3) Unmarked tolerance level should follow GB/T 1804-c.

Table 22 Volt	age specification	n and power of	electric operation
---------------	-------------------	----------------	--------------------

Attachment Name	Electric operation						
Voltage specification	DC24V	AC230V/DC220V	AC400V				
power (W)	80	150	150	200			

8. 10 Copper bar in front of board or copper cable with wiring terminal

File No.: NDT-01095

Fig.18 Connection of Copper Bar in Front of Board or Copper Cable with Terminal Block Table 23 Connection size of copper bar in front of board or copper cable with wiring terminal

Model	A (mm)	B (mm)	$\Phi C (mm)$	H (mm)
NDM5E-160	≤12	≪8.5	6.5	21

Note 1: Connect with the circuit breaker and select the appropriate wiring mode according to (appearance, installation dimension and wiring method);

Note 2: If the copper connecting bar is selected, the copper with bar cannot be directly connected with the circuit breaker body, and it is necessary to purchase extended busbar accessories;

Note 3: Unmarked tolerance level should follow GB/T 1804-c.

8.11 Safety distance

The minimum safety distance between the top, bottom, side and front panel when

installing the circuit breaker, see the figure below.

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 24 of 34

Table 24 Insulation distance mounted in the metal cabinet (unit: mm)

Model	Spacing A	Spacing B	Spacing C	Spacing D	Spacing E	Spacing F
NDM5E-160	≥50	≥ 0	$\geqslant 0$	≥100	≥65	≥35

Note: 1) Front panel wiring (Standard Phase partition) unit: mm

2) Unmarked tolerance level should follow GB/T 1804-c.

8.12 Wiring diagram of circuit breaker

Fig.20 Main circuit wiring mode of AC products

9、Attachment function description

9.1 Under-voltage release

When the power voltage drops to the range (35%~70%) of the under-voltage release, the release can break the circuit breaker reliably; when the power voltage is 35% lower than the rated working voltage of the under-voltage release, the release can prevent closing of the circuit breaker; when the power voltage is 85% higher than the rated working voltage of the under-voltage release can guarantee reliable closing of the circuit breaker.

Accessory name				
Voltage specifications (V)	AC110/DC110	AC230/DC250	AC400	torque value of
Maintain power consumption (W)	0.5	1.0	1.5	wiring screw
Code name	Q11	Q22	Q40	1. 2N. m

Table 25 Rated Parameters of the Under-voltage Release

Fig. 21 Working diagram of under-voltage release

9.2 Shunt release

When the external voltage of the shunt release is between 70% and 110% of the rated Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 25 of 34

control power voltage, the release can break the circuit breaker reliably.

	Table 26 R	ated Parameter	rs of the Shunt Re	elease	-			
Accessory name		Shunt release						
Voltage specifications (V)	AC24/DC24	AC48/DC48	AC110/DC110	AC230/DC250	torque value of wiring			
Power waste(W)	20	13	8	19	screw			
Code name	FT02	FT04	FT11	FT22	1. 2N. m			

Fig.22 Working Diagram of Shunt Release

сī

Note: shunt tripper is working principle: it is a single pulse action. If it needs to act again, the shunt release must be power on before it can act again.

-C2

Fig.23 Working principle diagram of shunt tripper

If long-term power supply is required so that the circuit breaker cannot be closed normally, one auxiliary contact can be connected in series as shown in the figure below.

9.3 Rated parameters of the auxiliary contact

Table 27 Parameter	of Auxiliary	Contact
--------------------	--------------	---------

Accessory name		Auxiliary contact(conventional)	Auxiliary contact(low power consumption)
Voltage specifications (V)/conventional thermal current (Ith)		AC250V/10A、AC400V/3A、 DC220V/0.2A	DC30V/0.1A
Wiring diagram	Off	F12(F22/F32)	F11(F21/F31)
wiring diagram	On	F12(F22/F32)	F11(F21/F31)
Internal resistance		$<30 \mathrm{m}\Omega$	$<$ 50m Ω

Add: No.2000, South Shen Jiang Rd. Pudong District, Shanghai, 201315, PRC Tel:(021)68586699 Fax:(021)23025796 Page 26 of 34 Note 1: If need DC30V/0.1A Auxiliary contact, please explain when ordering $_{\circ}$

2: The first auxiliary harness is identified as F11 (red), F12 (white), F14(yellow), and the second auxiliary harness is identified as F21 (red), F22(white), F24 (yellow), and so on. At most three groups of auxiliary harness are installed.

9.4 Rated parameters of the alarm contact

Table 20	Datad		of th	· ~ ~1		aamtaat
1able 29	Rateu	parameters	or u	ie ai	ann	contact

Accessory name		Alarm contact(conventional) Alarm contact(low consumption)	
Voltage specifications (V)/conventional (Ith)		AC250V/10A 、 AC400V/3A 、 DC30V/0.1A DC220V/0.2A	
Wiring	On, off	B12	B11
diagram	Free tripping	B12 B14	B11
Internal resistance		<30m Ω	$<$ 50m Ω

Note: 1)If need DC30V/0.1A Alarm contact, please explain when ordering.

2): Alarm harness is identified as B11 (red), B12 (white), B14 (yellow).

Under-voltage release, Shunt Release, Auxiliary contact, Alarm contact, the standard wiring line is 0.7m long, 1m, 2m, 4m can be customized according to requirements.

9.5 Communication Adaptor DF-MB/C3

Installing by DIN35 standard slide rail, the dimension of single product is shown as below.

If there is a T in the MCCB release code, this unit is contained NDT2570020.

The main parameters are as follows:

Table 29 Main	Parameter	of Commu	inication	Adaptor
---------------	-----------	----------	-----------	---------

Communication adaptor common parameter				
Electrical	Power supply	24V DC(19.2~28.8VDC)		
characteristic	Power dissipation	40mA		
Communication	Port	RS485, 2 Modbus RTU		
	Optional address	1~99		
	Baud rate	2400/4800/9600/19200bps		
	Check bit	CRC check odd-even check not supported		
	Maximum number of single unibus	32		
Physical characteristic	Domonoion	90×71.7×22.5mm(terminal not included)		
	Demension	109.5×71.7×22.5mm(terminal included)		

	Weight	0.075kg	
	Installation method	2*35mm standard DIN35 slide rail	
	Working temperature	-25℃~70℃	
Environment characteristic	Restoring temperature	-40℃~75℃	
	Ambient condition	surrounding temperature 40 °C ,relative humidity 95%	
	Pollution	3	
	Fire resistance	UL94-V0	
	Protection level	IP20	

Outline and installation dimensions and terminal signal defini

Fig.24 External Dimension of Communication Adaptor

Note: Unmarked tolerance level should follow GB/T 1804-c.

Definition of front knob and indicator light of communication adapter:

Fig. 25 Gear Adjustment of Communication Adaptor

File No.: NDT-01095

LAZZEN

良信

Fig.26 Terminal Ports of Communication Adaptor

Note: 1. DO1~DO3 are three ways output control and can be customized the output functions. For example, the on/off control singal for motor operator.

2. Multiple numbers of adapters can be cascade installed (maximum 32). Each MCCB can set address(1~99), there are 2400,4800,9600,19200bps, four option for baud rate set.

3. When communication adaptor in temperature -35° C~-25°C, we suggest to decline baud rate to increase communication reliability.

Fig.27 Terminal Ports of Communication Adaptor

9.6 DF-XS1 Display Module

This module installs in the cabinet door. The opening of cabinet should be $91.6_0^{+0.5} \times 91.6_0^{+0.5}$.

Detailed operation should follow the instruction book if DF-XS1 display module

The main parameters are as follows:

Table 30 Main parameters of Display Module				
Electrical	Power supply	24VDC(19.2~28.8VDC)		
characteristic	Power dissipation	40mA		
	Dimension	96×96×33mm		
Physical	Weight	0.22kg		
characteristic	Display	160*160 pixel ,white back light		
	Installation method	Horizontal installation (surface installation)		
	Working temperature	-25°C~70°C		
	Restoring temperature	-40°C~75°C		
Environment	Ambient condition	Surrounding temperature40℃, relative humidity 95%		
characteristic	Pollution	3		
	Fire resistance	UL94-V0		
	Protection level	IP20		

Outline dimension drawing Schematic diagram of opening size Fig.28 External Dimension for Display Module

Fig.29 Display Module Connected to Product

Note: this module has four ports, can connect to four MCCB in the same time in order to set and display MCCB parameter.

Display module can't be selected with ETB-T,ETB-PT circuit breaker at this stage.

9.7 DF-WK6 Temperature Module

Installing with standard DIN35 slide rail, outside dimension and installation dimension of single product shows as below. can be cascade installed. Temperature sampling points can be optional from 1 to 6 according to need. Each point can be monitored and have alarm output.

Table 51 Faranceer of Temperature Would					
Temperature alarm module common parameter					
	Working power supply	20 \sim 55V(Wide voltage)			
	Static power consumption	2.4W			
Electrical	DO static power dissipation	250VAC/30VDC 2.5A Resistive load			
characteristic	Measurable temperature range	0℃-150℃			
	Temperature resolution	1°C			
	Temperature accuracy	±3°C			
	Port	RS485, 2 Modbus RTU			
Communication	Optional address	1~9			
	Baud rate	2400/4800/9600/19200bps			

Table 31 Parameter of Temperature Module

	Check bit	CRC check odd-even check not supported
Physical	Dimension	90×71.5×22.5mm(without extended terminal) 109.5×71.5×22.5mm(with extended terminal)
characteristic	Weight	0.25kg
•	Installation method	35mm standard DIN slide rail
Environment characteristic	Working temperature	-35℃~70℃
	Restoring temperature	-40℃~75℃
	Ambient temperature	Surrounding temperature 40 relative hunmiduty 95%
	Pollution	3
	Fire resistance	UL94-V0
	Protection level	IP20

Note: When communication adaptor in temperature -35 $^\circ\!C$ --25 $^\circ\!C$, we suggest to declinebaud rate to

increase communication reliability.

Outline dimension drawing Installation diagram Fig.30 External Dimension of Temperature Module

Note: Unmarked tolerance level should follow GB/T 1804-c.

10. Installation direction of circuit breaker

For vertical installation of the product, the gradient between the installation surface

and the vertical plane is no more than ±22.5°.

Horizontal installation of the product.

File No.: NDT-01095

Vertical Installation Horizontal Installation Fig.31 Mounting Method of Product

11, Packaging and storage of circuit breaker

Minimum packaging quantity: 1 piece/box. The packaged products should be stored in a warehouse with the air ventilation and the relative humidity no more than 80% when the ambient temperature is $-40^{\circ}C \sim +75^{\circ}C$. No acidic alkaline or other corrosive gas exists in the ambient air in the warehouse. Under the conditions above, the storage period shall be no more than three years since the manufacturing date.

12, Environment

The environment that comply with RoHS instruction.

13. Installation direction of circuit breaker

SN	Name	Specification	3P Quantity/Set	4P Quantity/Set
1	Cross small pan-head screw	M4 imes 75	2	3
2	Hexagon nut	M4	2	3
3	Spring washer	4	2	3
4	Plain washer	4	2	3
5	Phase partition		4	6
6	Terminal screw	M6×18	6	8

Table 32 Accessories list form

14. Circuit breaker notes

1) Various characteristics and accessories of the circuit breaker are set in the factory. The circuit breaker, tripping unit or other accessories can only be adjusted, installed and

maintained by the trained or qualified professionals according to the parameter requirements of the line design;

2) Ensure that the power supply is off before installing or removing any device;

3) The circuit breaker handle can be located in three positions, indicating three states: on,

off and free tripping. When the handle is in the free tripping position, pull the handle in the off direction when the circuit breaker is connected and on.